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ABSTRACT
Invalid ad traffic is an inherent problem of programmatic
advertising that has not been properly addressed so far. Tra-
ditionally, it has been considered that invalid ad traffic only
harms the interests of advertisers, which pay for the cost
of invalid ad impressions while other industry stakeholders
earn revenue through commissions regardless of the quality
of the impression. Our first contribution consists of providing
evidence that shows how the Demand Side Platforms (DSPs),
one of the most important intermediaries in the programmatic
advertising supply chain, may be suffering from economic
losses due to invalid ad traffic. Addressing the problem of
invalid traffic at DSPs requires a highly scalable solution
that can identify invalid traffic at individual bid request level
in real time. The second and main contribution is the de-
sign and implementation of a solution for the invalid traffic
problem. A system that can be seamlessly integrated in the
current programmatic ecosystem by the DSPs. Our system
has been released under an open source license, becoming
the first auditable solution for invalid ad traffic detection.
The intrinsic transparency of our solution along with the
good results obtained in industrial trials have led the World
Federation of Advertisers to endorse it.

1 INTRODUCTION
Online advertising is a major social and economic driver of
the so-called Information Society. First, online advertising
sponsors free offerings of essential services to billions of users,
such as Online Search Services, Map Services, and Social Me-
dia. Second, the market volume of online advertising reached,
only in the US, $72.5 B in 2016 with an inter-annual growth
rate of 22 % [37]. Third, online advertising represents an
important source of jobs. For instance, recent studies have
estimated that 0.9M (0.4 %) direct and 5.4M (2.5 %) indi-
rect jobs were associated to online advertising in the EU-28
workforce in 2014 [48]. Fourth, online advertising represents
the fundamental source of income of the companies at the
forefront of technological innovations such as Google or Face-
book [4, 19]. Therefore, it is in the best interest of everyone
(citizens, governments and the private sector) to guarantee
the sustainable growth of this business. However, this sus-
tainability is in jeopardy due to several factors. Arguably, the
most important is the high volume of invalid ad traffic, i.e.,
delivered ads not shown to humans. It is estimated that every
year trillions of delivered ad impressions are not watched by
humans leading to losses of tens of billions of dollars for
advertisers [24, 57].

Unfortunately, the identification and filtering of invalid
ad traffic has not been properly addressed so far due to two
fundamental reasons: First, a rapidly increasing fraction of
ad transactions occur through a programmatic ecosystem,

where a chain of intermediaries automatically connects adver-
tisers willing to show ads and publishers owning the inventory
(websites, mobile apps) to show those ads. This automatic
process makes the detection of invalid traffic complex. Sec-
ond, intermediaries in programmatic advertising receive a
commission for each delivered ad, regardless if it is invalid or
not. Then, it is well accepted the idea that invalid traffic only
harms the interests of advertisers, which pay for the cost of
the invalid ad impressions. Intermediaries in the supply chain
get a commission for each served invalid impression and then
they do not have direct monetary incentives to effectively
fight invalid traffic.

Specialized companies referred to as verification vendors
(e.g. IAS [26], DoubleVerify [17], Whiteops [56]) have emerged
offering opaque proprietary solutions for the identification of
invalid traffic. These vendors argue that opacity is needed to
avoid providing valuable information to potential fraudsters,
but previous research has shown that even simple attack
vectors can defeat these opaque defenses [14, 34]. In addi-
tion, opacity prevents the possibility of independent auditing
of these detection techniques. These solutions do not prop-
erly address the concerns of advertisers, which have become
increasingly vocal about the uncertainty of the quality of
programmatic media transactions [18, 51, 54] and the lack
of transparency in the ecosystem [8, 15].

To meet the demands of advertisers, in this paper, we
present the first open source and auditable solution for the
detection of invalid ad traffic in programmatic advertising.

Prior to designing our solution, we have revisited the com-
mon idea that advertisers are the only stakeholders affected
by invalid ad traffic in programmatic advertising. We present
an economic model based on real financial reports of Demand
Side Platforms -DSPs- (a key intermediary in the program-
matic advertising ecosystem) and realistic assumptions on the
operational set-up of DSPs, which provides initial evidence
that invalid ad traffic seems to negatively impact the business
model of DSPs. This finding suggests, contrary to the con-
ventional wisdom that DSPs may have strong incentives to
filter invalid ad traffic. Our analysis concludes that post-bid
(i.e. non real-time) detection of invalid traffic does not solve
the problem for the DSPs. Instead, DSPs require a solution
that can identify invalid traffic in real-time and at the level of
individual bid requests. Moreover, DSPs handle up to tens of
billions of bid requests per day, a factor imposing demanding
computational performance constraints to the invalid traffic
detection problem.

The main contribution of this paper, is Nameles, an open-
source auditable invalid ad traffic detection system that op-
erates in real-time at the level of individual request. There-
fore, it meets the requirements of both advertisers and DSPs.
Nameles identifies anomalous ad requests patterns of domains
using an algorithm based on Shannon entropy. Nameles has
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Figure 1: Overview of the programmatic advertising ecosystem operation.

been built in accord with the latest version of openRTB spec-
ification [31] and is able to handle up to 500 k bid requests
per second, adding a total delay of 3 ms or less to each bid
request. As a result, it can be seamlessly integrated into the
programmatic supply-chain as a solution for the DSPs. We
have applied Nameles on a stream of ∼1.8 B daily bid request
for a period of 2 months observing that (in average) 20 % of
the daily ad traffic can be safely considered invalid.

Nameles has been publicly released under an open source
license. Its code is public and then auditable by anyone. In
addition, while the current opaque approach taken by the Ad
Tech industry has been shown flawed [14, 34], open-source
software has been proven a key success factor in other related
areas, e.g. Snort [43] for Network Intrusion Detection. These
facts along with the good detection performance shown by
the system in extensive industry trials has led the main global
advertiser trade-body, the World Federation of Advertisers
(WFA), to endorse Nameles.

2 BACKGROUND
In this section, we describe the process of serving an ad in
programmatic advertising.

A user connects to a website1 offering one (or more) ad
space(s). Each ad space is typically leased by the website’s
publisher to an ad network, which upon the user’s connection
generates an ad request. This ad request may be forwarded
through several intermediaries until it reaches the Ad Ex-
change. This part of the process is referred to as the sell side
and is represented by Step 1 in Figure 1. The ad request
includes the domain name, IP address of the device, the User
Agent, user’s cookie(s), etc. Upon the reception of the ad
request, the Ad Exchange initiates an auction referred to as
the bidding process, which represents the buy-side of the pro-
grammatic process. The bidding processes is standardized by
the openRTB protocol [31]. First, the Ad Exchange processes
the information included in the ad request to generate a bid
1Note that the described process is the same when considering a mobile
app instead of a website.

request whose format is specified by the openRTB standard
[31]. For simplicity, in this paper, we will consider that a
bid request includes the IP address receiving the ad and
the domain name selling the ad space. Each bid request is
sent to the Demand Side Platforms (DSPs) registered in the
Ad Exchange. A DSP is an intermediary where advertisers,
or their agencies, configure their programmatic advertising
campaigns. Therefore, upon the reception of a bid request a
DSP checks if the request meets the configuration parameters
of any of its advertisers and if so, it creates a bid response
including, among other information, the price the advertiser
is willing to pay to show its ad in the website and to the user
indicated by the bid request. Note that the bid responses to
a given bid request have to be received by the Ad Exchange
within 100 ms [21]. The Ad Exchange runs an auction based
on the received bid responses and informs all the participant
DSPs about the selected winner bid. The bidding process is
represented by Steps 2-4 in Figure 1. To finalize the program-
matic process the Ad Exchange coordinates the delivery of
an URL from where obtaining the ad, which is immediately
downloaded by the browser and shown to the user. This is
represented by step 5 in Figure 1. An ad successfully delivered
is referred to as an ad impression.

In the current programmatic ecosystem Ad Exchanges
aggregate ad inventory (i.e., ad spaces) from up to tens of
thousands of publishers, each DSP connects up to a 100 Ad
Exchanges, receives up to tens of billions of bid requests per
day and handles in the order of hundreds to thousands of
advertisers.

From a business perspective, each bid represents an oppor-
tunity for the DSP to match demand on the buy-side with
supply on the sell-side. In effect, each bid event corresponds
with an opportunity to place an online advertisement on a
web page for the advertiser, and an opportunity to monetize
an ad placement for the publisher. Based on their respective
commission percentages (a reference of them obtained from
insights from the industry is presented in Figure 1), the in-
termediaries are compensated every time a bid is successfully
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transacted and an ad is displayed as a result. However, the
advertiser benefits only when the traffic associated with the
transaction is valid. This business model is open to fraudulent
activity [24, 55, 57] (e.g., a publisher monetizing visits to
a website coming from bots) whereas it seems to not offer
the right incentives to intermediaries to identify and filter
invalid ad traffic. Note that, according to various industry
guidelines [20, 54], invalid traffic is defined to correspond
with those bid events where displaying an ad would not have
any potential for advertising effect and the advertiser would
lose its investment without getting anything in return. Var-
ious industry bodies and committees of established bodies
have been created to define general guidelines to address
the invalid traffic problem: JICWEBS, TAG, Botlab, and
MRC’s Invalid Traffic Committee [6, 11, 29, 52]. Moreover,
verification companies (e.g., IAS, Double Verify or WhiteOps)
have emerged recently offering proprietary opaque solutions
for filtering invalid traffic. However, the lack of transparency
on the used techniques makes tough to assess their actual
capabilities. Indeed, recent works have demonstrated ineffi-
ciencies in existing solutions for the identification of invalid
traffic [14, 34].

Despite these efforts, different studies attribute billions
of dollars wasted in invalid traffic every year [24, 55, 57].
This economic damage, the uncertainty in the quality of
media transactions and the lack of transparency in the pro-
grammatic ecosystem (including verification companies) have
pushed advertisers to become increasingly vocal about the
invalid ad traffic problem [8, 15, 18, 51, 54].

3 ECONOMIC IMPACT OF INVALID
TRAFFIC IN DSP COMPANIES

In this section we refute the argument that advertisers are
the only stakeholders in the programmatic ecosystem nega-
tively affected by invalid traffic [35]. To this end, we provide
qualitative and quantitative economic analyses that support
how, under realistic assumptions, invalid traffic negatively
impacts the profitability of DSP companies.

3.1 Qualitative Analysis
We assert that DSP companies are rarely profitable [5]. We
investigated seven publicly listed DSP companies through
their annual income statements and found that only one
company had a positive net income [5]. Moreover, depending
on the DSP company, variable costs ranged from 30 % to 50 %
of the revenue [5]. Variable costs represent a proportion of
total costs that vary as a function of revenue. These findings
indicate that the current operation of major DSPs creates
losses that have a strong correlation with variable costs.

The DSP company win-rate [15] is defined as the fraction
of won bids out of all auctions. Regardless if an auction the
DSP is hosting results in a win or not, the DSP bears the
cost for facilitating that auction. Then, the inverse of the
win-rate indicates how much a DSP company accumulated
variable costs that yield no economic revenue. While valid bids
represent a real opportunity for advertisers that provides an

intangible value even to lost valid bids, in the case of invalid
bids there is not a real opportunity and thus lost invalid bids
contributes exclusively to increase DSPs costs.

Moreover, based on interviews we conducted with DSP
companies, we conclude that the DSP win-rate is typically
between 5 % to 20 %. An individual advertiser win-rate has
been shown to be in the range 0.1 % to 1 % [59] and an ad
exchange fill-rate (i.e, the fraction of successfully completed
auctions) in the range 10 % to 40 % [42]. Consequently, we
assert that there is an oversupply of programmatic media
impressions, which supports the economic viability of invalid
traffic filtering. In other words, even after removing the invalid
traffic there will be still enough ad inventory available for
DSPs to consume.

In summary, all the above objective facts show that filtering
invalid traffic would contribute to reducing the accumulated
variable costs of DSPs without affecting the availability of ad
inventory and as a result would lead to improving profitability
and valuation of a DSP company. In addition, filtering invalid
traffic would reduce strategic risk associated with undisclosed
exposure to ad fraud. In the case of two DSP companies [30,
49], each lost significant fraction of their market capitalization
as a direct result of their exposure to invalid traffic becoming
evident to investors.

Finally, to maximize the profitability of the DSP company,
invalid bid requests should be identified in real time in the
pre-bid stage, so that variable costs incurred by processing
such invalid bids are minimized since the processing of the
bid is stopped in the first step of the procedure.

3.2 Quantitative Analysis
Net Present Value (NPV) model is the tool of choice for finan-
cial forecasting because it considers the time value of money,
and provides a concrete metric to financial decision mak-
ers, such as investors, for evaluating investment against the
predicted return [7]. Finance theory endorses an investment
if NPV is positive and higher than NPV of an alternative
investment [7]. In addition to the NPV, we evaluated Enter-
prise Value (EV) [27], a useful variant of the NPV, that takes
into account cash flows beyond the forecasted time window.
Positive NPV and EV values are reached when the cash in-
flows exceed cash outflows [7]. NPV and EV are widely used
as decision-making tools for planning purchases, mergers or
acquisitions [7].

We compute NPV and EV for two scenarios; without in-
valid traffic filtering (Scenario A), and with filtering (Scenario
B). The timeframe of the analysis is eight years. NPV and
EV are computed based on five key factors:
1) Annual growth rates. In our analysis, they are based on
the industry average of seven publicly listed DSPs’ annual
and quarterly income statements between 2012-2015 [22] and
are the same for both scenarios.
2) Rate of return 𝑟. A typical 𝑟 for investments made into
new systems or products is 20 % [7, 28]. We use this value
for both scenarios.
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Enterprise Value (EV) Net Present Value (NPV)

No filtering Filtering No filtering Filtering

Max [F=0,23; P=0] Min [F=1; P=1] Max [F=0,23; P=0] Min [F=1; P=1]

DSP-1 10.544 19.002 -3.269 4.421 8.020 -1.979
DSP-2 2.516 5.194 -3.518 536 1.672 -2.213
DSP-3 3.254 3.833 -1.147 1.237 1.481 -706
DSP-4 1.184 2.973 -2.376 133 892 -1.498
DSP-5 1.702 2.648 -819 634 1.035 -506
DSP-6 1-354 2.342 -1.005 445 863 -628
DSP-7 1.595 2.262 -2.118 310 592 -1.337

Industry avg.
ACME 3.163 5.468 -2.036 1.101 2.079 -1.267

Table 1: Impact of invalid traffic filtering to economics of DSPs.

3) Invalid traffic filtering rate 𝐹 . We consider 𝐹 = 0 for
Scenario A and 𝐹 ranging between 0 and 100 % for Scenario
B.
4) Revenue penalty 𝑃 (as a dependent factor of 𝐹 ). We have
selected the parameters of the penalty function to make the
penalty increase in an exponential manner, such that the
penalty is low until 𝐹 = 20 − 30 % and it spikes after this
point until 𝐹 reaches 100 % where all traffic is filtered. This
function has been carefully constructed so that low penalty is
imposed for filtering rates up to the average reported fraction
of invalid traffic from different studies [16, 58] as well as
insights from the industry.
5) Long-term cash flow growth rate 𝐺, which is set-up to 2 %
in both scenarios [33].

Our results show that there are NPV and EV gains for
the DSP when the filtering rate increases from zero towards
𝐹 = 23 %. Filtering invalid traffic beyond 𝐹 > 23 % first
results in diminishing benefit and eventually drives a decline
in revenue for the DSP. These results confirm our hypothesis
that filtering invalid traffic (at a reasonable rate) improves
DSPs profitability due to a reduction in variable costs.

Table 1 shows the minimum and maximum values of NPV
and EV, which correspond to [F;P] values of [0,23;0] and
[1;1] in Scenario B, respectively. We observe that at the
optimal filtering rate, NPV and EV in Scenario B increase
(in average) 1,72 and 1,89 times in comparison with Scenario
A, respectively.

Finally, we would like to highlight that the results of NPV
and EV obtained in this section represent a reference example
based on realistic assumptions and should be interpreted as
such.

4 DATASET
The dataset used in this paper includes a daily sample of in-
coming bid requests stream data collected between December
01, 2016 and Jan 31, 2017. The data is from one of the largest
DSPs with significant global presence. The data consist of
desktop and mobile bid events, for video, banner and in-app
inventory. In particular, each daily sample includes between

1.7-1.9 Billion actual bid requests issued on that date from
∼50 Ad Exchanges. These bid requests are associated (in
average) to ∼150 M IP addresses and ∼900 k domains per
day. The dataset includes the following information per bid
request: a unique identifier, the IP address of the device
initiating the ad request and the Web Domain or Mobile
Application ID selling the ad space. For simplicity, we refer
to both Web Domains and Mobile Applications as Domains
along the paper.

5 SYSTEM REQUIREMENTS, DESIGN AND
IMPLEMENTATION

In this section we describe Nameles, a system for the de-
tection of invalid ad traffic that operates in real time and
at the level of individual bid requests, thus meeting the re-
quirements of DSPs. Moreover, Nameles is (to the best of
the authors’ knowledge) the first open source and auditable
solution for the detection of invalid ad traffic, thus meeting
the requirements of advertisers. We will first describe the
fundamental operational requirements of the system and then
provide details on its design and implementation.

5.1 System’s Functional Requirements
1. Scalability: DSPs typically handle tens of billions of bid
requests per day. This maps into peaks of hundreds of thou-
sands bid request per second. Nameles must be capable of
handling these high rates of bid requests.
2. Delay: The bid response to a given bid request has to be
received by the Ad Exchange within 100 ms [21]. Hence, the
delay introduced should be limited to few ms in order to
minimize the impact in the overall bidding process delay.
3. Accuracy in invalid traffic identification: Providing 100 %
guarantee that a bid request is invalid (or not) is not feasible.
Instead, it is more reliable providing a Confidence Score
associated to a bid request indicating the likelihood that such
bid request is invalid. Therefore, our system must incorporate
an accurate scoring algorithm.
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5.2 System Design
In this subsection, we first present a brief overview of the
system functionality and how it is integrated within the pro-
grammatic advertising ecosystem and more specifically with
the DSPs. Then, we describe in detail each of the functional
blocks forming Nameles: the Communication Interface, the
Scoring Module, and the Filtering Module.

5.2.1 Overview. Figure 2 depicts a high level representa-
tion of Nameles functional blocks. Moreover, the figure shows
how Nameles could be integrated into the programmatic ad
delivery chain as an auxiliary service for DSPs. The only
difference with respect to the current operation of a DSP
would be that, as part of the pre-bid phase, the DSP makes
a request to Nameles to provide a Confidence Score per bid
request. To this end, the DSP sends a scoring request to
Nameles (step 2 in Figure 2). The scoring request includes
the following fields: bid request id (to allow mapping Name-
les result to the corresponding bid request), IP address of
the device associated with the ad request and the domain
offering the ad space. This information is included in the bid
requests as defined in the openRTB protocol standard [31].
The scoring request is delivered to two independent modules
of Nameles: the Scoring module and the Filtering module.

Because the DSP has limited information about a bid
request to determine if it is invalid or not, we propose to
aggregate all bid requests from a domain and use statistical
analysis to determine the level of confidence of a domain.
This approach provides statistically robust Confidence Scores
for domains since they are computed from a sample of (at
least) hundreds of bid requests. Then, Nameles assigns to
the bid requests from a domain the Confidence Score of such
domain. The Scoring Module is responsible for computing
the Confidence Score for domains present in the bid requests
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Figure 3: Parallel Pipeline communication architecture.

received by the DSP. Moreover, it groups the domains in four
different Confidence Classes. The traffic profile associated
with a given domain may change significantly over time,
resulting in a higher (or lower) confidence. To address this
issue, the Scoring Module recomputes the Confidence Score
of each domain every day. As a result of the described process,
the Scoring Module produces every day a Scoring List that
includes both the Confidence Score and the Confidence Class
for each individual domain.

The Filtering module is responsible for classifying in real-
time each received scoring request. To this end, it retrieves the
domain id from the scoring request and obtains the domain’s
Confidence Score and Confidence Class from the Scoring List
introduced above. After that, it creates a scoring reply to be
sent to the DSP (Step 3 in Figure 2). This reply includes
the following information: bid request id (extracted from
the corresponding scoring request), the domain Confidence
Score, and the domain Confidence Class. If the domain is not
present in the Scoring List, the scoring reply includes NULL
values for the Confidence Score and the Confidence Class.

Finally, the communication between the DSP and Nameles
is handled by the Communication Interface Module.

5.2.2 Communication Interface Module. This module is
responsible for handling the communication between the
DSP and Nameles. Specifically, it manages the delivery of
scoring requests from the DSP to Nameles and scoring replies
in the opposite direction. We have opted to use a parallel
pipeline communication structure as depicted in Figure 3.
In particular, the DSP creates two queues: a sending queue
used for pushing scoring requests to Nameles and a receiving
queue for pulling scoring replies from Nameles in return.
Nameles sets up a number of worker processes, which connect
to the sockets associated with both queues. These workers
pull scoring requests from the sending queue and forward
them to the Scoring and Filtering modules. The result of the
filtering process is pushed by the workers to the receiving
queue of the DSP.
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The parallel pipeline communication structure offers a
number of characteristics that make it a suitable solution
in our case. First, it is easy to implement, thus requiring a
low deployment effort for the DSPs using Nameles. Second,
it offers outstanding scalability performance, being able to
handle streams of hundreds of thousands of requests per
second with processing delays below 3 ms (see Section 6.2).
Third, it can be implemented using existing message handling
solutions and middleware [2, 25, 47].

5.2.3 Scoring Module. The goal of the scoring module
is to produce a Scoring List of domains to be used by the
Filtering module. This list is updated daily. Since Nameles
operates in real-time, the list used at day 𝑑 is obtained from
a prediction algorithm applied on the historical Confidence
Score values of domains at days 𝑑 − 1, 𝑑 − 2, 𝑑 − 3, ...

To produce the Scoring List, the Scoring Module imple-
ments 3 different algorithms: one to compute the Confidence
Score of each individual domain, a second to compute the
Confidence Classes, and a third to derive the Scoring list to
be used at day 𝑑 based on historical information. Next, we
describe each of these algorithms.

- Confidence Score computation: A DSP can reconstruct
the traffic pattern associated with a given domain 𝑋 by
analyzing the distribution of a number of requests across
the IP addresses included in the bid requests associated to
𝑋. This is the fundamental signal used by our algorithm.
Skewed distributions, where most bid requests come from
just a few IP addresses, are for obvious reasons suspicious2

and thus domains presenting such traffic patterns should be
assigned low Confidence Scores. Instead, legit traffic patterns
correspond to more homogeneous distributions of bid requests
across IPs and domains presenting such distributions should
receive high Confidence Scores.

We compute the Shannon Entropy [40] of the distribution
of bid requests across IP addresses for each domain in the
considered dataset. The Shannon Entropy summarizes in
a single value the level of determinism of a distribution
and ranges between 0 (all bid requests to a domain come
from a single IP address) and 𝑙𝑜𝑔2 (𝑛) (the bid requests are
homogeneously distributed across the n IP addresses making
ad requests to the domain). We use the following expression
to compute the Entropy (𝐻 (𝑋 )) for a domain 𝑋:

𝐻 (𝑋 ) = 𝑙𝑜𝑔2 (𝐶 (𝑋 )) −
∑︀𝑛

𝑖=1 𝐶 (𝑥𝑖) 𝑙𝑜𝑔2 (𝐶 (𝑥𝑖))

𝐶 (𝑋 )
(1)

where, 𝐶 (𝑥𝑖) represents the number of bid requests re-
ceived by the domain from IP𝑖, and 𝐶 (𝑋 ) represents the
total number of bid requests associated with the domain.

Shannon entropy has been successfully used in a wide range
of applications [40] and specifically in the field of anomaly
detection [32, 53].

2For instance, this can be the result of a domain receiving most of
its visits from scrapers or from other types of bots associated with
fraudulent ad traffic.
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Figure 4: Distribution of Confidence Score (CS) values for do-
mains with more than 500 bid requests at December 1, 2016.

However, in our case, it has an important limitation be-
cause it does not consider the volume of bid requests, but
just the shape of the distribution of bid requests. This avoids
making a direct comparison of domains with different vol-
umes of bid requests. For instance, a domain with 5 bid
requests uniformly distributed across 5 IPs would have the
same Entropy value (2.32) than a domain with 5000 bid
requests homogeneously distributed across 5 IPs. While the
first domain is just an unpopular domain, the second one
is highly suspicious, having a high number of daily visits
distributed evenly across a small number of IPs.

To address this limitation, we propose a normalization
process that takes into account the volume of bid request
associated to a domain. In essence, we compute the ratio of
the entropy (𝐻 (𝑋 )) and the binary logarithm of the total
number of bid requests (𝐶 (𝑋 )) and scale the resulting value
to a normalized range between 0 and 100. This normalized en-
tropy score is the Confidence Score (CS) assigned to domains
by Nameles and its formal expression is:

𝐶𝑆 (𝑋 ) = 100
(︂

1 −
∑︀𝑛

𝑖=1 𝐶 (𝑥𝑖) 𝑙𝑜𝑔2 (𝐶 (𝑥𝑖))

𝐶 (𝑋 ) 𝑙𝑜𝑔2 (𝐶 (𝑋 ))

)︂
(2)

To get an intuition on the effect of this normalization
process, we can consider the toy example mentioned above.
The domain with 5 bid requests from 5 IP address would
have a high CS equal to 100 whereas the domain with 5000
bid requests would have a low CS equal to 19.

- Computation of the Confidence Classes: We first analyzed
the probability distribution function of the CS values across
domains in our daily datasets. Figure 4 shows this distribu-
tion for a specific day. Note that other days in our dataset
showed similar distributions. We observed a skewed distri-
bution concentrated in the high CS values with a long tail
towards low CS values. This indicates that most domains
present homogeneous traffic patterns (represented by high
CS) whereas as we move towards low values, fewer domains
are found presenting increasingly deterministic patterns. In
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other words, as we move towards lower values of CS we find
domains with infrequent (i.e., statistically unlikely) traffic
patterns offering lower confidence.

To define the Confidence Classes, we use two different
unsupervised statistical methods that divide the distribution
in 4 ranges each representing a single Confidence Class:
- Outlier detection method: This method identifies outlier
CS values based on the definition of traditional outliers [38],
i.e., 𝐶𝑆 (𝑋 ) < 25 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 1.5 × 𝐼𝑄𝑅. Nameles uses this
expression to define the threshold for the No Confidence
Class including domains with an extremely deterministic and
infrequent traffic pattern.
- Dispersion method: We defined intermediate Confidence
Classes between the one formed by outliers and the one
composed by the mass of legit domains. To this end, we
use the Upper Half Range3 (UHR) of the distribution as
our dispersion metric and define two new thresholds as
𝑚𝑎𝑥 (𝐶𝑆) − 2×𝑈𝐻𝑅 and 𝑚𝑎𝑥 (𝐶𝑆) − 3×𝑈𝐻𝑅. Based on
these thresholds we defined the following Confidence Classes:

∙ Low Confidence Class: formed by domains whose
CS falls in the range 𝑚𝑎𝑥 (𝐶𝑆) − 3 UHR > 𝐶𝑆 ≥
25 percentile − 1.5 IQR.

∙ Moderate Confidence Class: formed by domains whose
CS falls in the range 𝑚𝑎𝑥 (𝐶𝑆) − 2 UHR > 𝐶𝑆 ≥
𝑚𝑎𝑥 (𝐶𝑆) − 3 UHR.

∙ High Confidence Class: formed by domains whose
CS falls in the range 𝐶𝑆 ≥ 𝑚𝑎𝑥 (𝐶𝑆) − 2 UHR.

Figure 4 shows the four defined Confidence Classes for
the Confidence Score distribution of the December 1, 2016,
dataset.

- Predicting the Scoring List: The Scoring list used at day 𝑑
has to be inferred from a prediction algorithm applied on the
historical Confidence Score values of domains at days 𝑑 − 1,
𝑑−2, 𝑑−3, . . . We refer to the estimated CS value of a domain
X included in this list as 𝐶𝑆*

𝑑 (𝑋 ). To define the prediction
algorithm, we first studied the stationary properties of the
temporal series of CS values of domains across the 62 days
forming our dataset. This analysis revealed that CS values
present a high stationarity, with 40 % of the domains in our
dataset being strictly stationary (with a 90 % confidence in-
terval), as reported by the Augmented Dickey-Fuller test [39].
The analysis of the autocorrelation and partial autocorre-
lation functions for these domains revealed that in general,
only the CS of the previous day (𝐶𝑆𝑑−1 (𝑋 )) contributes
significantly to the prediction of 𝐶𝑆 (𝑋 ) at day 𝑑. Then, the
optimal predictor is 𝐶𝑆*

𝑑 (𝑋 ) = 𝐶𝑆𝑑−1 (𝑋 ) and the Scoring
List to be used at day 𝑑 is formed by the 𝐶𝑆*

𝑑 (𝑋 ) of the
different domains in our dataset.

As a result of the application of the three described algo-
rithms, the Scoring Module produces each day a Scoring List
that includes both the Confidence Score and the Confidence
Class for each individual domain.

3The UHR is measured as the distance between the median and the
maximum value of the CS distribution.

5.2.4 Filtering Module. This module processes in real-time
each received scoring request from the Communication Inter-
face module. In particular, it extracts the domain from the
scoring request and searches for the 𝐶𝑆*

𝑑 (𝑋 ) and the Confi-
dence Class associated with the domain in the Scoring list.
As a result of this process, the Filtering Module generates
a scoring reply message including the following information:
Bid Request ID (obtained from the corresponding scoring
request), the domain’s CS and the domain’s Confidence Class.
The scoring reply is sent to the DSP through the Communica-
tion Interface module. The DSP can leverage this information
to define its own invalid traffic filtering policy. Note that if
the domain extracted from the scoring request is not present
in the Scoring list, the scoring reply has the following content
<bid request id, NULL, NULL>.

5.3 System Implementation
In this subsection, we describe our implementation of Name-
les that meets the performance and scalability requirements
defined in Subsection 5.1. For doing this, we used resources
with negligible cost in comparison to typical resources avail-
able for DSPs and relying on open-source technology.

5.3.1 The Communication Interface and Filtering module.
The Communication Interface and the Filtering modules
address different functional aspects of Nameles and thus we
have described them separately in Section 5.2. In our Nameles
prototype, we use an integrated implementation of these two
functional modules for efficiency purposes.

We implement the parallel pipeline communication struc-
ture described in Figure 3 on top of ZeroMQ [2] (a highly
scalable distributed messaging system) using the existing
Java bindings for this purpose. On the Nameles side, we use
6 workers that in addition to taking care of the pull and push
communication functions, implement the filtering process.
Each worker is an independent process, which has an inde-
pendent copy of the Scoring List hash table produced by the
Scoring Module allocated in RAM. Moreover, each worker
pulls independently scoring requests from the DSP’s sending
queue. For each scoring request, it extracts the domain id,
obtains the CS and Confidence Class associated with the
domain from the Scoring List hash table, creates the scoring
reply and pushes it to the DSP’s receiving queue.

5.3.2 The Scoring Module. The Scoring Module imple-
ments a temporal hash table including the number of bid
requests associated with each pair <domain, IP>. For each
new bid request, the counter of the tuple <domain, IP> in-
cluded in the bid request is increased by 1. At the end of every
day, the resulting hash table includes the needed information
to compute the Confidence Score for each domain as well as
the thresholds to define the different Confidence Classes. For
this purpose, we store this temporal table into a PostgreSQL
database and use different PostgreSQL functions and Java
scripts to obtain the CS and the Confidence Class of each
domain. The final result of the process is the Scoring List,
which is stored in a hash table using as a key the domain id
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and as value the tuple <CS, Confidence Class>. This table
is transferred to the “Communication Interface and Filtering”
module to be used in the real-time filtering of bid requests.
Finally, the table computed with the data at day 𝑑 serves as
scoring list for day 𝑑 + 1.

6 PERFORMANCE EVALUATION OF THE
SYSTEM

We have deployed a realistic experimental set-up to confirm
that our Nameles prototype meets the requirements defined
in Section 5.1. Specifically, the scalability and delay require-
ments, and accuracy pertaining to the scoring of domains.

6.1 Experimental Set-up
To conduct the performance evaluation, we have deployed
an experimental set-up that replicates a production set-up
in actual business use by a large-scale DSP. In particular, we
use three servers in our setup for Nameles. The first server
plays the role of the DSP. This server uses the real stream
of bid requests from our dataset to produce a stream of
scoring requests to Nameles. The rate of scoring requests is
a configurable parameter so that we can perform stress-tests
by using significantly higher rates of bids per second than
the ones reflected in our dataset. The second server deploys
the “Communication Interface and Filtering” module of our
Nameles prototype. It receives the stream of scoring requests
from the DSP server and processes it to obtain the scoring
replies. In addition, this server forwards the scoring requests
to a third server, which implements the “Scoring” module.

The server emulating the DSP is a Dell PowerEdge R710
with 16-cores, 48 GB of RAM and 6 TB of hard drive capac-
ity with a non-recurring-cost (NRC) of ∼$6k. The servers
implementing the “Communication and Filtering” and the
“Scoring” modules are similar, a Dell PowerEdge R730xd with
24-cores, 64 GB of RAM and 46 TB hard drive capacity with
a NRC of ∼$13 k. Each server is connected to a common
1 Gbps Ethernet switch. In the context of common use in the
Adtech industry, the resources employed in our prototype
can be considered commodity hardware.

6.2 Scalability and Processing Delay
6.2.1 Scoring List computation time. A critical aspect of

the scalability of Nameles resides in its ability to produce
the Scoring List in a short time. Specifically, given that the
Scoring List is updated daily, the computation process must
guarantee that the new list is ready before the expiration of
the previous one, i.e., in less than 24 h. We have measured the
computation time for the 62 daily datasets, including between
1.7-1.9 B bid requests, and confirmed that the computation
time of the Scoring List is always shorter than 4 hours. Hence,
Nameles meets the scalability requirements for this critical
process.

6.2.2 Delay and memory consumption of the filtering pro-
cess. From the DSP’s perspective, the filtering process starts
when it sends a Scoring Request and finishes when it receives
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Figure 5: 95 percentile of delay and memory consumption for
the filtering process at different input request rates.

the corresponding Scoring Reply. The analysis of our dataset
reveals an average and a peak rate of 22 k and 26 k requests
per second, respectively. Then, our prototype must meet
the next two requirements while processing scoring requests
streams at the observed peak rate: not overflowing the mem-
ory of the server and offering a small delay to minimize its
impact on the overall delay of the real-time bidding process.

We have evaluated the performance of our prototype for
scoring request streams ranging from 10 k to 500 k queries
per second (QPS). For each of the analyzed rates we run
stress-tests of 5 minutes. During the tests, we measure the
individual delay associated with the filtering process of each
scoring request as well as the overall memory consumption of
the filtering process. Figure 5 summarizes the performance
of our Nameles prototype. The x-axis shows the different
tested scoring request rates. The left y-axis and right y-
axis show the 95-percentile filtering delay and 95-percentile
memory consumption measured during the experiment for
the different scoring request rates (QPS), respectively. Note
that each stress test has been run 5 times. The line in the
figure represents the average of 95-percentile values across
the 5 experiments whereas the lighter color area shows the
max and min 95-percentile values.

First of all, we observe that the system performance is
quite stable across the different experiments and the observed
variability in memory consumption is due to the instanta-
neous load of the server at the measurement moment rather
than the QPS of the experiment. The results of the stress-
tests demonstrate that our Nameles prototype offers very
high scalability performance. In particular, the 95 percentile
of memory consumption and delay are lower than 28 GB
and 3 ms for any of the considered QPS. These results prove
that our filtering process scales to handle more than 20 B
bid requests per day with a modest infrastructure, meeting
the requirements of the largest DSPs such as Google, The
Trading Desk and MediaMath.
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𝐶𝑆𝑑 (𝑋 ) \ 𝐶𝑆*
𝑑 (𝑋 ) No C. Low C. Mod. C. High C.

No Confidence 0.65 % 0.28 % 0.07 %
Low Confidence 0.57 % 1.13 % 0.10 %

Moderate Confidence 0.30 % 1.06 % 3.02 %
High Confidence 0.06 % 0.10 % 2.93 %

Table 2: Average miss-classification rates among the Confi-
dence Classes for the 62 daily samples in the dataset.

6.3 Scoring Accuracy
In order to measure the accuracy of our scoring method,
we first assess the accuracy of our prediction algorithm and
then the accuracy of the Confidence Scores assigned to the
domains.

6.3.1 Accuracy of prediction algorithm. For each of the
daily datasets, we have computed the Root Mean Square
Error (RMSE) of the difference between the predicted CS
(𝐶𝑆*

𝑑 (𝑋 )) and the actual CS (𝐶𝑆𝑑 (𝑋 )) across all domains.
The results indicate that the RMSE is smaller than 3 points
in every case.

In addition, we have evaluated the miss-classification rate
of domains among Confidence Classes. Table 2 presents a
summary of the average miss-classification rate between each
pair of Confidence Classes across the 62 days in our dataset.
First of all, we observe that miss-classification rates are below
3.02 % between any pair of classes. A careful analysis of the
miss-classified domains indicates that the classification errors
are mainly associated with domains having a CS close to
the threshold that separates two contiguous classes. This is
also coherent with the fact that mis-classifications between
non-contiguous classes are negligible (< 0.3 %).

6.3.2 Assessment of Confidence Score accuracy. The accu-
racy of the Confidence Score cannot be objectively evaluated.
There are various continuously changing factors related with
the invalid traffic problem; attack vectors, domain traffic
profiles, and others. As a result, there are no reliable ground
truth datasets available for evaluating invalid traffic filtering
solutions. However, contrary to propriety verification solu-
tions that suffer from this same issue, Nameles source code
can be independently audited. To validate the accuracy of
the Confidence Scoring, we performed an assessment using a
twofold approach. First, we conducted an analysis that relies
on the following metrics, which are extensively used in the
Adtech industry to infer the quality of traffic of a domain:
- Bounce Rate: This metric measures the fraction of sessions
that only visit a single page in a domain. A low bounce rate
is a strong indication of low quality traffic.
- Traffic from popular publishers: This metric represents the
percentage of upstream traffic coming to the domain from
popular publishers. In particular, the two publishers con-
tributing a larger fraction of traffic to domains are Google
and Facebook. Then, for our validation, we will compute the

fraction of upstream traffic coming from Google and Face-
book to a domain. A very low fraction of traffic coming from
them may reveal the presence of low quality traffic.
- Search Traffic: This metric measures the percentage of traffic
coming to the domain from search engines. A very low search
traffic percentage is often an indication of low quality traffic.
- Direct Traffic: This metric measures the percentage of traffic
that reach the domain directly without being redirected from
other website. In this case, a large fraction of direct traffic is
usually linked to low quality traffic.
- Number of sites linking to a domain: An interesting domain
attracting high quality traffic would typically be linked from
a large number of other sites. Contrary to this, domains
associated with ad fraud or other malicious practices, would
typically be linked from a lower number of sites.

We have queried two well-known services, Alexa [3] and
SimilarWeb [41], to obtain these metrics for those domains in
our dataset with more than 500 associated bid requests. Note
that not all the metrics are offered by both services. Table
3 presents the median and IQR values for the distribution
of each one of these metrics for each Confidence Class. In
addition, the table shows the relative difference of the median
values of these metrics for the “No”, “Low” and “Moderate”
Confidence Classes in comparison to the “High” Confidence
Class.

We observed substantial differences (up to 75 % in some
cases) between the “High Confidence” Class and the rest,
suggesting that our scoring mechanism is able to accurately
identify legitimate domains.

Secondly, we have worked closely together with experts
from the Ad Tech industry over a period of 18 months to
improve, as well as to subjectively evaluate, the results pro-
vided by Nameles in extensive trials. The satisfactory results
obtained during these tests have led the World Federation of
Advertisers as well as renowned Ad Fraud research consul-
tants, unnamed to preserve author’s anonymity, to endorse
Nameles.

We conclude that both the objective analysis based on
proxy metrics pertaining the confidence level of a domain,
as well as the evaluation conducted by individual experts,
suggest that the accuracy of Nameles’ scoring system is
suitable for adoption by DSPs.

7 RESULTS OBTAINED FROM NAMELES’
EXECUTION

In this section we present the results obtained from applying
Nameles to our large-scale dataset. First, we analyze the dis-
tribution of domains and traffic across the defined Confidence
Classes. Then, we use the corresponding fractions of traffic
associated with each Confidence Class as filtering rate input
to the economic model described in Section 3.2 in order to
quantify the positive impact that Nameles may have in the
profitability of DSPs.
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No Conf. Low Conf. Moderate Conf. High Conf.

Alexa Upstream traffic from Google and Facebook
(%)

median 20 (−41 %) 18.5 (−45 %) 23.7 (−30 %) 33.7
IQR 21.05 20.19 24.19 32.84

Alexa Bounce rate (%) median 41.8 (−27 %) 40.9 (−29 %) 35.3 (−39 %) 57.5
IQR 32.4 25.6 27.7 28.7

Alexa Search traffic (%) median 8.1 (−35 %) 7.7 (−38 %) 5.5 (−56 %) 12.5
IQR 19.7 15.9 16.1 16.9

Alexa Total sites linking to the domain median 9.2 (−75 %) 131 (−62 %) 256 (−27 %) 348
IQR 616 371 800 1,198

SimilarWeb Bounce rate (%) median 51.5 (−12 %) 38.8 (−34 %) 34.9 (−40 %) 58.6
IQR 24.97 20.84 24.8 24.0

SimilarWeb Direct traffic (%) median 43.1 (68 %) 34.2 (34 %) 38.1 (49 %) 25.6
IQR 39.5 37.0 34.6 27.8

SimilarWeb Search traffic (%) median 21.2 (−31 %) 29.3 (−5 %) 19.5 (−37 %) 30.9
IQR 39.3 46.5 39.5 39.8

Table 3: Value of external quality metrics associated with domains in each of the defined Confidence Classes in our dataset.
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Figure 6: Percentage of domains and ad traffic in each of the
Confidence Classes across the 62 days of the dataset. The main
bar presents the average value whereas the error bars show
the minimum and maximum values.

7.1 Longitudinal Analysis of domains’ confidence
level

Figure 6 shows the fraction of domains and ad traffic (i.e.,
bid requests) belonging to each of the defined Confidence
Classes for the 62 days in our dataset. The main bar shows
the average fraction and the error bar shows the maximum
and minimum values across the days in the sample. Note
that these results are obtained for domains with at least 500
bid requests in a day in order to guarantee that we have
statistically meaningful information about the traffic pattern
of the domain. In average (11.21; 8.83; 33.30; 46.66) % of
the traffic is associated with (“No”, “Low”, “Moderate” and
“High”) Confidence Classes. For instance, a DSP handling
50 B bid request per day using a policy that filters traffic
belonging to “No” and “Low” classes would eliminate (in
average) around 10 B (20 %) bid requests every day.

103 104 105 106

Minimum bid requests per domain
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Figure 7: Percentage of ad traffic in each Confidence Class as
function of the popularity (i.e., bid requests) of domains.

In addition, we analyzed how popularity relates to confi-
dence. To this end, we computed the average (and standard
deviation) fraction of traffic within each Confidence Class for
domains with at least 500, 1 k, 10 k, 50 k, 100 k and 1 M bid
requests per day. Figure 7 shows the results. One may expect
that as more popular domains are considered, the fraction of
domains within the “High” Confidence Class would increase
and the fraction in other groups would decrease. However,
we observe the opposite trend between “Moderate” (which
increases) and “High” (which decreases) classes. In case of
“Low” and “No” Confidence Classes we observe just a light
increase after 100 k daily bid requests.

7.2 Nameles’ impact on DSPs’ profitability

The results in the previous subsection provide specific figures
on the filtering rates that Nameles provides at different confi-
dence level. For instance, a filtering rate of 11.21 % filters out
traffic from domains with very rare traffic patterns that offer
no confidence. A filtering rate of 20.04 % eliminates traffic
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offering low or no confidence, and a filtering rate of 53.34 %
filters any domain that does not provide a high confidence.

Using these filtering rates as input to the economic model
presented in Section 3.2 gives us an estimation of the impact
that Nameles is expected to have in the profitability of a
DSP. The obtained results indicate that filtering at the “No
Confidence”, “Low Confidence” and “Moderate Confidence”
level offer NPV (and EV) improvements in comparison to
the scenario without filtering of 41, 54 and −204 % (14, 19
and −71 %). We observe that filtering at the “Moderate
Confidence” level would not be recommended. On the other
hand, filtering at the “No Confidence” or “Low Confidence”
class leads to strong positive economic impact.

As highlighted in Section 3.2, these results apply in the
scenario defined by the considered realistic assumptions.

8 NAMELES’ APPLICABILITY,
EXTENSIBILITY AND RELEASE

In this section, we first elaborate on the applicability of
Nameles by other players of programmatic advertising further
than DSPs. Second, we discuss how Nameles can be easily
extended to assess the traffic patterns of IP address as well as
to integrate new detection mechanisms, which will enhance
its capacity to filter invalid traffic. Finally, we present our
reasons to release Nameles as an open source solution.

8.1 Applicability
In this paper, we have presented a prototype of Nameles
ready to be integrated with DSPs. We have focused in DSPs
since our economic analysis in Section 3 provides evidences
that they are negatively affected by invalid ad traffic. How-
ever, Nameles can be easily integrated with other players
of the programmatic advertising supply chain such as Ad
Exchanges or SSPs, which handle a representative fraction
of the ad traffic of a given domain. Moreover advertisers
and legit publishers can indirectly use Nameles. For instance,
if DSPs provide information about the CS of domains to
their advertisers, they can define their advertising buy plan
using such info. Publishers can use their CS as a reference
to self-evaluate the quality of ad traffic in their domains and
identify potential problems (e.g., the unconscious use of an
illegitimate source of traffic).

8.2 Extensibility
8.2.1 Signals’ extensibility. The concept of entropy allows

us to compute the CS considering different signals. In partic-
ular, in addition to the default signal used in this paper (CS
of domains), we have computed the CS of individual IP ad-
dresses. To this end, we consider the traffic pattern generated
by each IP address as the distribution of ad requests it sends
across different domains. Having the CS for the IP and the
domain within a bid request enriches the decision capacity of
the DSP since such bid request can be dropped due to a low
CS associated with the IP address and/or the domain. We
have computed the CS for all IP addresses (with more than
500 entries) for every daily sample in our dataset and based

on it, we have re-calculated the fraction of traffic belonging
to the Confidence Classes more likely to be filtered by DSPs’
policies (i.e, None and Low Confidence Classes). Adding the
information about the CS of IP addresses increases the frac-
tion of traffic in these two categories in less than 0.5 %. Note
that to compute this we have also considered invalid all ad
traffic coming from IPs located in data-centers4 as recom-
mended by industry guidelines [12]. This result indicates that
the application of Nameles at the level of domains suffices
to identify more than 99 % of low quality ad traffic. Then,
due to the substantial computational overhead associated
with obtaining the CS for millions of IPs every day, DSPs
may find more efficient to focus exclusively on monitoring
domains.

8.2.2 Integrating complementary detection techniques. Key
advantages of Nameles are its modularity and simplicity,
which allow easy extension, modification, and improvement
of the platform. For instance, the current implementation
of Nameles uses the normalized entropy as the information
for identifying invalid traffic, and we acknowledge that this
technique is not able to identify all types of invalid traffic (see
Section 9). However, the Scoring module can be extended
to include other detection techniques (e.g., Co-Visitation
network [45]) to improve the efficiency of the platform. Indeed,
since its inception, Nameles was designed with the goal to
serve as a platform for the community-led industry-wide
effort to fight invalid traffic in programmatic advertising for
reasons discussed in next subsection.

8.3 Release as Open Source
Nameles is, to the best of the author’s knowledge, the first
available open source solution for the identification of invalid
ad traffic. We summarize next the reasons that lead us to
release it as open source: 1) It meets the demands of adver-
tisers that, led by the WFA, are claiming transparent and
auditable solutions; 2) Recent studies show that even simple
attacks can defeat existent opaque proprietary solutions. In-
stead, open source products, Snort [43] or Bro [50], have been
proven efficient in related areas such as Network Intrusion
Detection; 3) The identification of invalid traffic is a very
complex problem that needs to be addressed in a community
effort. This common effort needs to build upon initial open
source solutions such as Nameles.

9 NAMELES’ LIMITATIONS
The identification of invalid traffic is a very complex problem,
so neither Nameles’ nor any other technique is a one-size-
fits-all solution to end the problem. In the rest of the section
we discuss the main limitations of Nameles and argue why
despite of them, Nameles is still an important contribution.
As in any detection system, Nameles’ potential limitations
are associated to false negatives and false positives.

- False Negatives: They are represented by the invalid traffic
not identified by Nameles. In the presence of Nameles, any
4IPs have been mapped to datacenters using the list from [9].
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attacker owning a domain 𝑑 would be undetected if it is
able to generate a normal (i.e., similar to the mass) traffic
pattern for 𝑑. This is obviously doable, but it would require
the attacker to increase the complexity of the attack. First,
the attacker would need to infer the CS threshold over which
it would not be detected. Note that different DSPs can config-
ure different thresholds, making this inference exercise more
difficult. Second, an attacker performing 𝑛 daily visits to its
domain from 𝑚 IPs leading to a low CS would need to either
reduce 𝑛 or increase 𝑚 in order to make its CS overpass
the quality threshold defined by the different DSPs. Both
approaches lead to a reduction in the obtained revenue.

To obtain a ball park estimation of such reduction, we have
computed the number of daily visits that all 8K domains in
the “No” and “Low” Confidence Classes in a given day of our
dataset would need to remove in order to pass the threshold
of the “Moderate” Class. We found that in average these
domains would need to eliminate 38.5 % visits leading to a
roughly similar reduction in their revenue.

Therefore, despite being subject to invalid traffic attacks,
Nameles contributes to significantly reduce the profitability
associated to them.

-False Positives: They are represented by domains wrongly
assigned a low CS. While false positives may have serious
implications in other businesses, it is well-established in the
programmatic advertising industry that false positives are not
an issue for the buy-side, i.e., advertisers and DSPs, which
are the target of our solution. The existing oversupply of
ad spaces discussed in Section 3.1 guarantees that wrongly
filtering a legitimate domain would not result in a lost op-
portunity of placing an ad that would be provided by other
legitimate non-filtered domain.

Therefore, we assert that false positives are not an impor-
tant consideration in adopting Nameles.

10 RELATED WORK
In the recent years several studies have unveiled different
types of attacks used for generating invalid traffic with the
goal of generating monetary gain fraudulently [36, 46, 55],
with reported revenues of up to millions of dollars per day
[57]. To address the problem of invalid ad traffic, verification
vendors such as Integral Ads Science [26], Double Verify [17],
and WhiteOps [56] have emerged in recent years. Also major
players of the Adtech industry claim to devote significant
attention to address this issue [1]. Unfortunately, all existing
commercial solutions are based on opaque proprietary tech-
nologies, and it is hard to assess their efficiency in identifying
invalid traffic. Some recent studies have proven the inefficien-
cies of such solutions in identifying even simple invalid traffic
attacks [14, 34].

The research community has also addressed the identi-
fication of invalid ad traffic. The proposed solutions focus
on detecting invalid traffic at the sell side of the online ad-
vertising chain, i.e., publishers web pages [45] or delivered
ads [9, 23]. These solutions analyze the interaction of the
user with the web page or the served ad in order to identify

commonly known attacks such as visits generated by bots [9]
or redirection attacks [44]. None of these solutions are valid
for DSPs. To the best of the author’s knowledge, Stitelmant
et. al [13] proposed the only alternative solution to Nameles
able to operate at DSP level. By analyzing the degree of
overlapping in the IPs visiting two (or more) domains, their
solution identifies potential invalid traffic. Note that this is
a complementary traffic-based detection technique to our
normalized entropy score and thus it can be incorporated to
Nameles to improve its detection capability.

From a methodological perspective, there is a previous
work that has used entropy to identify invalid video visits
to a Chinese video portal [10]. The authors of this paper
propose to use entropy as the final metric to assess the
traffic quality and a semi-supervised classification that rely
on manually labeled samples to differentiate between valid
and invalid video traffic. However, as discussed in Section
5, the native Shannon entropy has an important drawback
since its interpretation depends on the volume of associated
events. To overcome this limitation, we use a Confidence
Score based on a normalized version of entropy. Moreover,
instead of using manual labeling of suspicious traffic, we
define unsupervised statistically supported outlier detection
method. Hence, Namless clearly advance the state-of-the-art
from a methodological perspective as well.

11 CONCLUSION
This paper introduces Nameless, a system for the detection
of invalid ad traffic, which is one of the main problems faced
by the online advertising industry. Nameles has been de-
signed to meet the requirements of both advertisers and
DSPs that together form the so called buy-side of the pro-
grammatic advertising industry. On the one hand, Nameles is
the first available open source solution for the identification
of invalid traffic, responding to the advertisers’ demand for
transparency. On the other hand, the paper provides eco-
nomic supported evidences that, contrary to the conventional
wisdom, show how DSPs may increase their profitability with
invalid traffic filtering. For this, the applied solution needs to
be highly scalable and operate in real time and at the level of
individual bid requests. Nameles meets these requirements.

A Nameles’ prototype has been thoroughly tested in a
realistic deployment. We demonstrate that even with modest
resources, Nameles is able to process tens of billions of bid re-
quests per day, with processing delays below 3ms per request
and a good detection accuracy. Moreover, applying Nameles
on a 64 days dataset including almost 2 B bid requests per
day, we observe the presence of 20 % invalid traffic.

The evidenced performance of the current version of Name-
les along with our open-source vision has led the World Fed-
eration of Advertisers to endorse Nameles as a solution to
counter invalid traffic by the Adtech industry.
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