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ABSTRACT
Programmatic online advertising allows advertisers to diver-
sify their campaigns dynamically, set the desired context of
publishers’ content, and target a specific audience. Besides,
it is accessible to all budgets. Despite these notable ben-
efits, programmatic advertising has the drawback of being
highly exposed to low quality ad traffic, mainly associated
to fraudulent activities.

Detecting low quality ad traffic at scale is a difficult task
due to the large volume of ad requests delivered by the Ad
Tech ecosystem every day as well as the lack of collabora-
tion among different Ad Tech vendors. Indeed, identifying
sources of traffic (i.e., IP addresses or websites) involved in
ad fraud (and thus generating low quality traffic) requires
an important effort due to the reported scale of the problem.

In this paper, we propose an efficient and scalable method-
ology, based in the concept of entropy, to identify sources
presenting anomalously deterministic traffic patterns, so that
the traffic from these sources can be safely classified as low
quality traffic. We have applied this methodology to a set
of large-scale datasets including up to 2.5 B ad requests as-
sociated to 1.5 M referrers and 150 M IP addresses. The
obtained results indicate that low quality (anomalously de-
terministic) traffic represents roughly 15 % of the total ad
requests in the considered datasets. This may lead program-
matic advertising to generate estimated annual losses over
$3 B for advertisers only in US. This figure is comparable to
the losses generated by any major cyber-crime worldwide.

Finally, note that we have implemented the proposed method-
ology and released it as open source code for its wider use by
Ad Tech vendors and the research community in the context
of programmatic advertising.

1. INTRODUCTION
Advertising drives consumer spending, and as a result the

global economy. In US for example, 2/3 of the total GDP is a
result of consumer spending [4]. Depending on the category
of product or service, typically advertising attributes 1 %
to 90 % of gross sales for the product [17]. According to
GroupM, the world’s largest media agency group, US$160
billion are expected to be invested on digital media in 2016
[14], with World Federation of Advertisers reporting total
annual media investment globally at close to $700 billion [1].
In addition, next year investment on digital will be overtake
investment on TV in US [25].

Online advertising claims better access even for smaller
advertisers, and more capabilities together with an alleged
lift in comparison to traditional media. At the same time, it

has been shown that digital media investment is burdened
by lack of transparency, various forms of wastage and fraud
[6, 19]. Low quality traffic, significantly represented by ad
fraud, is the focus of the research and solution outlined in
this paper. In a recent report titled Business of Hacking,
HP Enterprise ranked ad fraud the lowest complexity and
highest yielding cyber-crime [12]. A literature review shows
that no well established measurement methodology is avail-
able to mitigate ad fraud, with estimates of total exposure
ranging from 2 % to over 90 % of all ad buys in question [23,
33]. Even by moderate estimates, ad fraud has grown into a
cyber mega-crime. Because of the central role the ad deliv-
ery chain has with the Internet’s energy footprint, webpage
associated end-user payload often being over 80 % related
to ads, fraud is creating a negative effect in the ad delivery
chain from data center energy economics to losses in na-
tional economy. In summary, ad fraud is a critical problem
threatening the Internet age economy.

Detection and prevention of ad fraud and other types of
low quality traffic is currently dependent on the propriety
capabilities provided by various vendors (e.g. WhiteOps,
Trustmetrics, Sentant, Integral Ad Science). This is in stark
contrast with well known success stories of overcoming inter-
net security related challenges, where industry-wide adop-
tion of open-source technology has been the norm. For ex-
ample Snort [29], an open-source Intrusion Detection Sys-
tem used widely by cybersecurity companies of all sizes, has
become synonymous with network security.

In its recent guidance to its members, the World Federa-
tion of Advertisers (WFA) Ad Fraud Workgroup called for
industry-wide adoption of open source solutions for coun-
tering ad fraud [1]. The group ranked open-source adoption
as one of the critical success factors on a list of 20 strate-
gic objectives for the online ad industry jointly fighting ad
fraud.

This paper outlines how we created such a solution, for
detecting both general and sophisticated low quality traffic
using as a reference the definition of invalid traffic provided
by MRC in Invalid Traffic Detection and Filtration Guide-
lines Addendum [9] in display, mobile, video and app media
buys.

In particular, we define a data-driven methodology that
measures the level of randomness (or determinism) in the
ad requests pattern of a given source, including referrers1

and IP addresses. To this end, we use the Shannon entropy,
which summarizes the mentioned level of randomness in an

1Note that in this paper we use the term referrer for websites
and mobile apps indistinguishably.



single value. Then, we apply a normalization process to
obtain our final metric that we refer to as the Normalized
Entropy Score (NES). The NES ranges between 0 and 100,
where 0 indicates full determinism in the traffic pattern of a
source and 100 indicates full randomness (for instance, in the
case of the ad request received by a website, they would be
distributed homogeneously among the IPs connecting to the
website and this number of IPs would be sufficiently large in
comparison with the number of ad requests). Finally, we use
outlier identification techniques to find sources presenting a
(statistically) anomalous NES value. These sources have an
anomalous traffic pattern with an excessive level of deter-
minism, which is typically a strong indicator of low quality
of traffic.

We have applied our data-driven methodology using ad
requests log files provided by a major AdTech company for
9 different days in 2015. These log files include information
of up to 2.14 B ad request associated to 150 M IP addresses
and 1.5 M referrers. Using a computing infrastructure con-
sisting of a single Linux server with 48 GB memory, we can
run our methodology at the described daily scale to identify
referrers and IP address with low quality traffic in matter of
a few hours. The application of our methodology to these
datasets indicate that 15 % of the traffic in programmatic
media buying is indeed low quality traffic. A ball-park esti-
mation translates this fraction of low quality programmatic
ad traffic into potential annual losses over $3.3 B for adver-
tisers in US. This figure is comparable to the revenue losses
generated by major cyber-crimes worldwide [28].

Note that following the example of the Internet security
industry and the recommendation of the WFA, we deliver
the code of the developed methodology as open-source2 for
its wider use by the Adtech industry and possibly other fields
of research focused on analyzing large-scale Internet data.

In summary, the main contributions of the paper are:

• A novel and scalable methodology to identify websites,
mobile apps and IP addresses generating low quality
ad inventory.

• A software version implementation of the methodology
available as open-source code through Github.

• The application of the methodology to large-scale datasets,
which provides worrisome insights on the exposure of
advertisers to a significant fraction of low quality traf-
fic in the programmatic media ecosystem.

The rest of the paper is organized as follows: Section 2
shows the dataset as well as the data processing infrastruc-
ture used in the paper. Section 3 details the methodology for
identifying sources delivering low quality traffic. Section 4
describes the approach used for validating the performance
of the methodology. Section 5 shows the results obtained
when we apply the detection methodology to our large-scale
datasets. Finally, Section 6 presents the most relevant re-
lated work and Section 7 concludes the paper.

2. DATASET DESCRIPTION
The dataset used in this paper is formed by a random

sampling out of the sell-side ad requests from tens of sources
processed by a major vendor from the Adtech industry on

2https://github.com/apastor/nameless-postgresql

day # of ad requests # of page visits

July 05, 2015 390 M 293 M

September 30, 2015 520 M 512 M
October 07, 2015 558 M 551 M
October 14, 2015 553 M 536 M
October 21, 2015 560 M 551 M

November 12, 2015 1.94 B 1.68 B
November 19, 2015 2.11 B 1.80 B
November 26, 2015 1.70 B 1.57 B
December 02, 2015 2.14 B 1.94 B

Table 1: Summary of datasets information: date, number of
ad requests and number of page visits (aggregate together
concurrent ad requests to a given referrer).

9 different days of 2015. Each entry in the log-file repre-
sents one ad request coming from a referrer and initiated by
an IP address. Next we provide details about the fields of
information for ad request records present in our dataset.
Timestamp: It indicates the time instant when the ad re-
quest was issued.
IP address: This field represents the IP address of the de-
vice that originated the ad request. Nearly all the entries
correspond to IPv4 addresses. Only 30 entries have IPv6 ad-
dresses within all the datasets. Moreover, 8 % of the entries
do not have an associated IP and then they are mapped to
a ”null IP”. Note that we do not filter out these entries since
they may be useful for identifying anomalous behaviors. For
instance, a referrer with a major fraction of associated ad
requests with null IPs.
Referrer: It represents the domain of the ad request’s re-
ferrer. Usually, it correspond to the website url (for web
pages) or the app ID3 (for apps). However, the referrer field
can also indicate the domain of an ad-network that has pre-
bought the advertisement slot. Note that the referrer value
is missing in 15 % of the entries in our dataset.

Table 1 summarizes the size of the datasets associated to
each one of the 9 considered days. In particular, the sizes
of the datasets range between 390 M and 2.14 B ad requests
per day.

2.1 Overview of Data Processing Infrastruc-
ture

Given the large volume of the dataset, we need to define a
scalable processing infrastructure to conduct the statistical
analyses described in Section 3. To this end we process the
original log files (with a Comma Separated Values (CSV)
format) to store the information in a PostgreSQL database
[24]. PostgreSQL provides a versatile environment rich in
datatypes, having data types for IPv4 and IPv6, built-in
functions, enhanced SQL syntax, and plugin facilities; while
being constrained in resource requirement. We use a re-
lational database schema with a main table for the ad re-
quest entries. In addition, we create look-up tables to codify
the string fields. We store in the main log table an integer
mapping to the corresponding string in its respective look-
up table. This serves to save memory and disk space since
each string is stored just once, as well as to accelerate com-
mon computation operations such as grouping or filtering

3App IDs are strings with the following format
com.Company.ProductName.

https://github.com/apastor/nameless-postgresql


the data (e.g., checking if two integers are equal is computa-
tionally more efficient than comparing two strings). Finally,
to compute the fundamental metrics of our methodology
directly on the database in an efficient manner, we imple-
mented a plugin aggregate function for postgreSQL in the
C programming language.

Using this data processing infrastructure in a standalone
LINUX server with 48 GB RAM and 16 cores, we are able
to compute the referrers’ entropy for the data sample of De-
cember 02 including 2.14 B ad requests in less than 20 hours.
An alternative solution using a Python Script with parallel
computing needed more than 60 hours for the same process.

2.2 Data Preprocessing
When a user visits a page, multiple ads (e.g., embedded in

different iFrames) can concurrently be shown to her. Each
one of these ad request appears as an independent ad re-
quest entry in our dataset. For the purpose of analyzing
the quality of traffic of a source (referrer or IP address), we
would like to merge together in a single entry all the con-
current ad requests from a specific IP address to a specific
referrer since they all correspond to the same page visit. To
this end we process the dataset to merge ad requests, which
share the same (or very similar) time-stamp, IP address and
referrer, which are likely concurrent ad requests.

3. METHODOLOGY FOR THE DETECTION
OF LOW QUALITY AD TRAFFIC

Our goal is to define a data-driven methodology which is
able to assess the quality of the traffic associated with an
individual source of traffic (referrer or IP address) at scale,
and then identify sources delivering low quality traffic. This
methodology would be tremendously useful for the Adtech
industry for complementing existing proprietary filtering so-
lutions [15, 32]. In the rest of the section we will first explain
the rationale behind our methodology. Then, we will pro-
vide a detailed description of the technical details of the
methodology.

3.1 Rationale
The ad traffic of a source (i.e., a referrer or an IP ad-

dress) is likely to present different patterns when coming
from ordinary human activity compared to non-human ac-
tivity. Some examples of anomalous traffic patterns are as
follows: (i) A fraudster owning a website where ads are dis-
played can set-up a few bots. These bots would visit her
website and eventually click in some of the displayed ads.
The fraudster may receive an economic compensation for
ad views, clicks or other monetizable user events associated
with the bots. Most of the traffic received by the fraudster’s
website will be concentrated in the bots’ IP addresses result-
ing in an uncommonly deterministic traffic pattern coming
from few IP addresses. (ii) A web scraper is a program
used to extract content of websites–like auction sites, bet
portals, or news websites–simulating the navigation of a hu-
man. Some of these web scrappers may visit a site millions
of times per day using a headless browser technology for
anti-scraping evasion, as a result also triggering ads on the
pages the scraper bots visit. The traffic generated by the
IP address running such type of web scrapper would present
an unusually deterministic pattern concentrated in a single
webpage. (iii) A major website buying a significant amount

of sourced traffic from unreliable sources in the traffic mar-
ket may show an anomalous traffic profile.

Hence, our goal is to define a method that is able to char-
acterize unusual traffic patterns associated with an ad traffic
source, e.g., a referrer. To this end, our methodology relies
in a fundamental concept from thermodynamic theory, the
entropy. The entropy based metric is capable of summariz-
ing the traffic pattern of a referrer in a single value, so that
we can compare traffic patterns across millions of referrers
in an efficient manner. In addition, it can be computed in a
scalable manner4.

Once we have computed the entropy for every referrer in
our dataset, we use statistical analyses such as outlier de-
tection techniques, in order to identify those referrers pre-
senting anomalous traffic patterns. Based on our initial as-
sumption (which will be validated later in the paper), these
anomalous traffic patterns are likely associated with low
quality referrers delivering low quality traffic. Therefore,
we believe that this methodology is an essential addition to
the traffic filtering tools currently implemented by vendors
in the Adtech industry.

Note that, as indicated above, our methodology can be
applied to different types of ad traffic sources: referrers (rep-
resenting websites and mobile apps) and IP addresses. For
the shake of clarity, in the previous example as well as in
the rest of the section, we consider the case of referrers and
make explicit mention to the case of IP addresses only when
needed.

3.2 Methodology Description
Our methodology is divided into three main components:

First, we compute the entropy for each referrer in our dataset.
Second, we define a normalization process of the entropy
value based on the traffic volume associated with each refer-
rer. Finally, we define statistically meaningful thresholds, to
separate referrers in different groups based on the quality of
their traffic (represented by the normalized entropy score).

3.2.1 Entropy computation
The entropy is a metric originally defined in the context

of thermodynamic theory. In this paper, we specifically use
the Shannon entropy, extensively used in Information The-
ory [26]. In essence, the entropy measures the level of ran-
domness (or determinism) of a given process. In the context
of this paper, our measurement of entropy in ad exchange
data will capture the level of determinism in the pattern of
ad requests received by a referrer from a set of IP addresses.

In particular, the traffic pattern associated to a refer-
rer is represented by the ad requests in our dataset and
then, it can be defined as a discrete random variable X =
{x1, x2, ..., xn}. X represents the set of the n different IPs
sending ad requests to the referrer. The expression to com-
pute entropy measure for a discrete random variable is as
follows:

H(X) = −
n∑

i=1

P (xi)log2(P (xi)) (1)

where P (xi) is the probability of receiving an ad request
from IP xi.

4As described in Section 3, we can compute the entropy of
1.5 M referrers receiving overall 2.1 B of ad requests from
150 M IP addresses in less than 20 hours.



Based on this formulation, the maximum possible value
of entropy, log2(n), is achieved by variables with a uniform
probability mass function, where all the values have the same
probability. In our case, this correspond to cases in which all
IPs sending ad request to a referrer send exactly the same
number of requests. In contrast, the minimum entropy value
is 0, when the probability mass function is a Kronecker delta,
meaning that there is no uncertainty in the expected value
as only one of them can actually happen. In our case, this
occurs when all the ad requests associated to a referrer come
from a single IP address.

We estimate the probabilities of the elements in the dataset
by maximum likelihood, P (xi) = C(xi)/C(X), where C(xi)
is the number of occurrences of the element xi and C(X) is
the total number of occurrences of all the elements in the
set. If we consider the case of a referrer in our dataset, C(xi)
would represents the number of ad requests received by the
website from IPi, and C(X) would represent the total num-
ber of ad requests associated with the website. By doing
so, the entropy measure can be computed directly from the
counts of occurrences of the elements and the total count as
follows:

H(X) = log2(C(X))−
∑n

i=1 C(xi)log2(C(xi))

C(X)
(2)

Note that the resulting formula can be easily parallelized
for its computation with a map-reduce process, where the
operations inside the summation can be implemented in a
map function with a final reduce function for adding the
values resulting from each element map computation. Be-
sides, storing in advance the joint occurrences of IPs and
referrers from the ad-requests stream, we can design a sys-
tem to compute the entropy from the occurrences count in
linear time, which makes our implementation of entropy cal-
culation efficient and highly scalable as reported in Section
2.

3.2.2 Normalized entropy score
As indicated above, the entropy value for a website ranges

between 0 and log2(n). Hence, it is difficult to compare two
referrers with a different volume of ad request or receiving
ad request from a different number of IPs (represented by
n).

Table 2 presents a toy example to illustrate this. In par-
ticular, it shows the traffic pattern associated with three
different referrers and their entropy values. We observe that
Referrer 2 and Referrer 3 have the same entropy value be-
cause the ad requests in both cases are homogeneously dis-
tributed across 5 IP addresses. Referrer 2 is an unpopular
referrer receiving 5 visits from 5 IPs. However, Referrer 3
is receiving 5 K visits from just 5 IPs, which seems highly
suspicious. This simple example demonstrate that we can-
not define the quality of a referrer’s traffic based exclusively
on entropy measurement, without taking into account its
volume of traffic.

To address this limitation, we perform a normalization
process to obtain a normalized entropy score (NES), which
takes into account the volume of traffic associated with a
referrer. In particular, the NES of a given referrer is com-
puted as the ratio of its entropy and the binary logarithm
of the total number of associated ad requests. The formal
expression to compute NES is as follows:

IP1 IP2 IP3 IP4 IP5 entropy NES

Referrer 1 5 0 0 0 0 0 0
Referrer 2 1 1 1 1 1 2.32 100
Referrer 3 1000 1000 1000 1000 1000 2.32 19

Table 2: Entropy of different websites according to the dis-
tribution of their visits.

NES(X) = 100

(
1−

∑n
i=1 C(xi)log2(C(xi))

C(X)log2(C(X))

)
(3)

Note that the defined normalization process generates a
unique range of values for the NES of any referrer between
0 (min value) and 100 (max value). If we consider the toy
example from Table 2, we observe how the proposed normal-
ization process penalizes Referrer 3 without affecting Refer-
rer 1 and Referrer 2, which still present the minimum and
maximum values, respectively.

The presented toy example provides a first intuition to un-
derstand the reason and the result of the normalization pro-
cess. Figure 1 shows the results of the normalization process
for the December 02 dataset. In particular, Figure 1a shows
the total number of ad-requests (x-axis) vs the entropy-value
(y-axis) for each referrer in the dataset. We have grouped
the referrer in buckets based on their number of ad requests5

and for each bucket we compute the distribution of the en-
tropy value and present it in the form of a boxplot in the
same figure. The boxplot represents the 25, 50 and 75 per-
centile values of the distribution as the bottom, mid and top
lines of the box, respectively. Moreover, the top and bottom
whiskers represent an extensively used outlier threshold (1.5
times the interquartile range) [34]. Hence, any website below
or above the whiskers is an outlier with an unusual traffic
pattern. In particular, outliers below the bottom whisker
present anomalously deterministic traffic patterns whereas
outliers above the top whisker show anomalously random
patterns. We observe that there are outliers only below the
bottom whisker. Then, we configure the threshold to distin-
guish referrers with anomalously deterministic traffic pat-
terns as the logarithmic regression of the bottom whiskers’
values of the seven boxplots. This threshold is represented
by the dashed black line in Figure 1a. We observe that the
threshold to identify suspicious referrers varies as function of
the number of ad request associated with the referrers, then
as our toy example illustrated, it may occur that two referrer
have the same entropy value, one of them being suspicious
and the other one not, which is counter-intuitive.

Figure 1b shows an equivalent to Figure 1a substituting
the entropy measure by the NES in the y-axis. We ob-
serve how the normalization process equalize the distribu-
tion across the different buckets, confirming that NES is a
metric independent from the volume of ad requests. Hence,
NES in a much more intuitive and practical metric, espe-
cially if it has to be used by non technically-skilled users.

Finally, remind the explanation of the entropy computa-
tion and normalization processes has been based on referrers.

5The defined buckets are evenly spaced in the logarithmic
scale: 1 K-3.16 K, 3.17 K-10 K, 10 K-31.62 K, 31.63 K-100 K,
etc. Note that the figure does not consider referrers with
less than 1 K ad-requests. Moreover, those buckets formed
by less than 100 samples are discarded.



(a) Scatter plot of domains’ entropy by IP vs. the total number
of visits received by the domain. The colorbar shows the corre-
sponding normalized score.

(b) Scatter plot of domains’ normalized entropic score by IP vs.
the total number of visits received by the domain.

Figure 1: Scatter plots with results of domains with more than 1 thousand visits the December 02. The boxplots show the
distribution of the entropy and the score dividing the domains in buckets in function of the number of visits.

The process is exactly the same for IP addresses, considering
that an IP address would distribute its ad requests across n
different referrers.

3.2.3 Threshold selection
The goal of our methodology is to identify referrers and IP

addresses with anomalous traffic patterns which are due to
low quality traffic. To this end, we have defined above a nor-
malized score, NES, which defines the level of randomness in
the ad traffic pattern of a referrer or an IP. In this subsection,
we will focus on defining statistically supported thresholds
for NES, which allow to identify referrer with anomalous
traffic patterns. Note that to compute these thresholds we
will rely on outlier detection as well as information theory
to reveal referrers with traffic patterns that appear with low
probability in our dataset and thus can be considered sus-
picious. In particular, we will define different thresholds
associated with different levels of suspicion. Note, that we
will describe the threshold definition methods for referrers
and then discuss on the suitability of each of them for the
case of IP addresses.
- Outlier detection method: This method has been pre-
sented in Section 3.2.2. In particular we compute the dis-
tribution of the NES values for the referrers in our dataset
and identify the outliers as those referrers with a NES value
lower than the 25 percentile - 1.5 IQR. These websites can
be considered extreme outliers and thus have an extremely
anomalous deterministic traffic pattern. Hence, we consider
them as highly suspicious. Note that we do not have any
outlier in the upper part of the distribution and thus there
is no referrer with extremely anomalous random traffic pat-
tern.
- Dispersion method: The outlier detection method iden-
tify highly suspicious websites with very low NES scores.
We would like to define less conservative thresholds, which
still identify websites with relative deterministic traffic pat-
terns. Figure 2a shows the histogram for NES across the
domains in our December 02 dataset. We observe a distri-
bution skewed towards high values of NES with a long tail
towards low values. In addition, the representation of this
distribution in the form of a boxplot, depicted by the large
boxplot in Figure 1b shows that there is no outliers on the
upper side of the distribution. Hence, we can safely assume

that sites with high NES scores present common traffic pat-
terns which are more likely to correspond to high quality
human traffic. Then, to define the new thresholds we use as
a reference the upper half range (UHR) of the distribution,
which is measured as the distance between the median and
the maximum value of the NES distribution. Using the UHR
as a dispersion metric, we define two different thresholds as
max(NES) - 2 UHR and max(NES) - 3 UHR.

Figures 1b and 2a show graphically the three described
thresholds. We observe that the threshold based on outlier
detection techniques is the most restrictive followed by the
threshold using 3 UHR and 2 UHR as dispersion distance,
respectively. The definition of these three thresholds allows
us to classify the websites in our dataset in 4 categories
as: highly suspicious when the NES value of the website
is below the outlier detection threshold; suspicious when
the NES value falls between the outlier detection and the
3 UHR threshold; likely suspicious when the NES value falls
between the 3 UHR and 2 UHR thresholds; legit when the
NES value is over the 2 UHR threshold.

Finally, Figure 2b shows the histogram of the NES value
across the IP addresses in our December 02 dataset. We
observe that contrary to the referrers’ distribution concen-
trated in high NES values, the distribution of NES values of
IP addresses concentrates in central values of the range with
a heavy tail towards low values and a much less significant
tail towards high values. This shape of NES distribution for
IP addresses avoid us to apply the two thresholds obtained
from the described dispersion method. Hence, in the case of
IP addresses we will consider suspicious only those IP ad-
dresses showing a NES value below the threshold defined by
the outlier detection method.

4. VALIDATION
The validation of the performance of a detection method-

ology, as the one proposed in this paper, is ideally conducted
based on ground truth dataset, which allows computing per-
formance metrics including the recall, the precision or the
F-score. Unfortunately, in digital advertising we do not
find such ground truth dataset. Therefore, to validate our
methodology, we will rely in external metrics used in the
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Figure 2: Distribution of the score of the domains and IPs with more than 1 thousand entries the December 02.

Adtech industry and that are associated to the quality of
traffic of a referrer or an IP address.

4.1 Metrics for Quality of Referrer’s traffic
There exist several metrics which are associated to the

traffic quality of a referrer. In particular, for the validation
of our methodology we consider the following ones:
Bounce Rate: This metric measures the fraction of ses-
sions in a referrer, which visit a single page. A low bounce
rate is a strong indication of low quality traffic.
Traffic from popular publishers: This metric represents
the percentage of upstream traffic coming to the website
from popular publishers. In particular, the two publishers
contributing a larger fraction of traffic to referrers are Google
and Facebook. Then, for our validation we will compute the
fraction of upstream traffic coming from Google and Face-
book to a referrer. A very low fraction of traffic coming from
Google and Facebook may reveal the presence of low quality
traffic.
Search Traffic: This metric measures the percentage of
traffic coming from search engines. A very low search traffic
percentage is often an indication of low quality traffic.
Direct Traffic: This metric measures the percentage of
traffic that visit the referrer directly without being redi-
rected from other website. In this case, a large fraction of
direct traffic is usually linked to low quality traffic.
Number of sites linking to a referrer: Interesting refer-
rer attracting high quality traffic would typically be linked
from a large number of other sites. Contrary, referrers asso-
ciated to ad fraud or other malicious practices, which offer
low quality traffic, would typically be linked from a lower
number of sites.

We have queried two well-known services, Alexa [2] and
SimilarWeb [27], to obtain these metrics for the referrers
in our December 02 dataset with more than 1K associated
ad requests. Note that not all the metrics were offered by
both services. Table 3 present the median and IQR val-
ues for the distribution of each one of these metrics for the
different groups of referrers identified by our methodology:
highly-suspicious, suspicious, likely suspicious and legit. In
addition, the table shows the relative difference of the me-
dian values of these metrics for each one of the suspicious

groups in comparison to the legit group.
We can observe substantial relative differences (over 100%

in some cases) between the highly suspicious and suspicious
groups and the legit group for all the considered metrics.
The relative differences are smaller, but still significant for
most metrics, when comparing the likely suspicious and the
legit groups.

4.2 Metrics for Quality of IP address’ traffic
Associations responsible for defining the guidelines to fight

fraud such as the MRC (US) or the JICWEBS (UK) include
data centers’ traffic as a common source of invalid traffic
(with some exceptions as servers providing VPN services)
and recommend to filter such traffic [9, 16]. Hence, to get
some insight about the performance of our methodology to
identify low quality traffic, we have computed the fraction
of IP addresses from the suspicious and legit groups belong-
ing to data centers. To this end we use two public available
lists of cloud and hosting providers’ IP prefixes [5, 13]. This
validation exercise reveals that, in average, 8.4 % of IP ad-
dresses in the suspicious group belong to data centers and
thus are considered to generate invalid traffic. This value
shrinks to the 3.6 % for the legit group. Moreover, IPs be-
longing to data centers are responsible of 11.9 % of the traffic
of the suspicious group, while in the legit group this value
decrease to 5.49 %.

Finally, we have conducted a cross validation exercise be-
tween suspicious IP addresses and suspicious referrers. In
particular, we have computed the fraction of ad requests
generated by data center IP addresses directed to the dif-
ferent groups of suspicious referrers as well as the group of
legit referrers. We observe that 99% of ad requests generated
by data center IPs are associated to the suspicious referrers
groups, and, in particular, 84% of these requests are directed
to referrers in the highly suspicious group.

In summary, we can conclude that the results reported in
this section provide solid evidences that our methodology
is able to properly classify referrers and IPs based on the
quality of their traffic in meaningfully defined groups.



highly suspicious suspicious likely suspicious legit

Alexa Upstream traffic from Google and
Facebook (%)

median 10.3 (-185%) 12.4 (-137%) 21.5 (-37%) 29.4
IQR 28.0 27.3 28.2 29.9

Alexa Bounce rate (%)
median 48.7 (-16%) 54.3 (-4%) 57.0 (+1%) 56.6
IQR 35.0 40.9 39.5 30.1

Alexa Search traffic (%)
median 9.2 (-45%) 8.2 (-62%) 10.2 (-30%) 13.3
IQR 15.5 12.4 12.5 18.6

Alexa Total sites linking to the domain
median 87 (-300%) 131 (-166%) 256 (-36%) 348
IQR 616 371 800 1,198

SimilarWeb Bounce rate (%)
median 45.6 (-23%) 48.6 (-16%) 53.3 (-5%) 56.2
IQR 34.1 33.9 31.5 27.7

SimilarWeb Direct traffic (%)
median 34.4 (+22%) 39.5 (+32%) 27.0 (+0%) 26.9
IQR 42.6 41.1 32.8 32.6

SimilarWeb Search traffic (%)
median 15.2 (-95%) 13.9 (-114%) 22.8 (-30%) 29.6
IQR 42.0 34.8 33.8 45.3

Table 3: Value of external metrics associated to quality of referrers’ traffic quality for the different suspicious groups and the
legit group of referrers reported by our methodology for the December 02 dataset.

5. RESULTS
Our large-scale datasets include a representative fraction

(approximately between 0.2 and 1 %) of the total number
(∼200 B) of daily ad-requests delivered in the programmatic
advertising ecosystem [1]. Therefore, applying our detec-
tion methodology to these datasets will provide statistically
significant insights about the volume of low quality traffic
present in this ecosystem. In particular, we will first present
results for referrers and IP address separately and conclude
the section providing an overall estimation of the low quality
traffic volume.

5.1 Referrers’ results
Table 4 shows the fraction of referrers and their associated

traffic belonging to the three defined suspicious groups and
the legit group for our 9 daily datasets. We observe that (in
average) 18.49 % of referrers are considered suspicious. In
addition, these sites are responsible (in average) for 40.7 %
of the daily programmatic ad-requests. Moreover, if we focus
exclusively on the highly suspicious referrers, they represent
6 % of all referrers and 9.92 % of all ad requests.

5.2 IP addresses’ results
In the case of IP addresses, we only have two groups, sus-

picious and legit IPs. Note that in this case the suspicious
group correspond to highly suspicious IPs since they have
been computed using the threshold defined with the outlier
detection technique. In addition, we assume that Adtech
vendors follow the recommendations from trade organiza-
tions in the assessment of traffic quality (e.g., the MRC (US)
or the JICWEBS (UK)) and filter all data center traffic. In-
deed, following the guidelines of these organizations, we have
filtered out all data center IPs since their traffic is considered
invalid. From the remaining IP addresses, we have computed
the fraction of IPs belonging to the suspicious and the legit
groups as well as the fraction of ad requests associated to
IPs in each of these groups for each of our daily datasets.
The results indicate that (in average) 8.7 % of IP addresses
are classified as suspicious by our methodology. In addition,

highly
susp.

suspicious
likely
susp.

total

July 05
referrers 7.38 % 7.67 % 11.76 % 26.82 %
traffic 17.27 % 13.44 % 45.06 % 75.77 %

September 30
referrers 5.66 % 4.10 % 12.98 % 22.75 %
traffic 14.97 % 11.76 % 24.85 % 51.57 %

October 07
referrers 6.18 % 0.88 % 10.68 % 17.74 %
traffic 12.51 % 3.74 % 25.49 % 41.74 %

October 14
referrers 5.95 % 0.82 % 10.96 % 17.72 %
traffic 14.01 % 2.00 % 22.57 % 38.58 %

October 21
referrers 6.11 % 0.81 % 11.09 % 18.01 %
traffic 13.26 % 3.94 % 21.16 % 38.36 %

November 12
referrers 6.49 % 0.56 % 10.94 % 17.99 %
traffic 5.15 % 0.57 % 25.29 % 31.01 %

November 19
referrers 5.38 % 1.16 % 10.39 % 16.93 %
traffic 3.31 % 2.03 % 20.41 % 25.74 %

November 26
referrers 6.18 % 2.53 % 11.95 % 20.65 %
traffic 4.74 % 2.49 % 26.14 % 33.37 %

December 02
referrers 4.71 % 1.32 % 10.79 % 16.82 %
traffic 4.08 % 2.54 % 23.54 % 30.16 %

average
referrers 6.00 % 2.21 % 11.28 % 19.49 %
traffic 9.92 % 4.72 % 26.06 % 40.70 %

Table 4: Percentage of referrers in each of the suspicious
groups and the their associated traffic of ad-requests.

these IPs are responsible (on average) for 8.3 % of the daily
ad requests.

5.3 Overall results
To estimate the overall suspicious traffic, we perform an

AND operation between the ad requests associated with sus-
picious websites and IPs that are either suspicious or from
a data center. By doing so, if an ad request appears associ-
ated to a suspicious referrer and a suspicious IP we will just
count it once, since it is actually the same request.

A conservative estimation of the overall suspicious traffic
would consider only as suspicious the referrers in the highly



suspicious group. In this case, our methodology indicate
that ∼15 % of all ad requests can be considered low qual-
ity traffic. Using this figure and given that the investment
in programmatic advertising is estimated to be $22 B for
2016 only in US [11], we can make a ball park estimation
that advertisers would face losses over $3 B associated to
low quality programmatic media buys in 2016 only in US.
This figure is comparable to the revenue losses generated by
major cyber-crimes such as tax-refund fraud or corporate ac-
count takeover worldwide [28]. Note that a less conservative
estimation considering referrers in all the defined suspicious
groups indicate that low quality traffic represents ∼40 % of
ad requests in our dataset leading to a ball park estimation
of losses for advertisers in US over $8.5 B. These results are
in line with previous studies which estimate enormous eco-
nomic losses for advertisers due to low quality traffic and ad
fraud [23, 33].

6. RELATED WORK
The obvious performance and economic implications as-

sociated to low quality and fraudulent advertising traffic,
has motivated the research community but also the indus-
try to propose solutions to mitigate this problem. Adtech
vendors have opted for proprietary solutions [15, 32], which
contribute to the lack of transparency of the digital advertis-
ing ecosystem and avoid the possibility of conducting proper
performance evaluations. Instead, the works we found in the
research community openly describe the proposed solutions
[21, 30], which contribute to build a body of knowledge to
fight fraud. However, this initial effort has not lead yet to
a collaborative open source development, which as demon-
strated in other areas as network security [29], contributes
to fight against malicious activities more efficiently. Next,
we briefly discuss some of the most relevant related work.

In the recent years we observe an increasing body of work
relying on data analysis and pattern recognition techniques
for fraud mitigation in online advertising [10, 18]. As a con-
sequence, the methods used by ad fraud cyber-criminals,
have evolve in sophistication as the industry and the re-
search community identify attacks and develop mitigation
techniques [3, 20, 31].

Despite the existence of sophisticated attacks, the fraction
of fraud using simple techniques is still relevant. In a recent
paper [6], Callejo et al. analyze the presence of bot traffic
from data centers on different campaigns they run in Google
AdWords. The authors identify up to a 10 % of this type of
fraud, depending the targeted keywords.

Besides, as cost per click (CPC) advertisements usually
report higher profits than cost per mille (CPM) impres-
sions, fraudsters simulate click events in websites and mobile
apps. Miller et al. [22] and Cho [8] propose techniques for
click fraud mitigation. For instance, serving a percentage
of transparent or unattractive ads and analyzing the click
through rate to identify the publishers committing artificial
clicks.

The solutions proposed in these studies focus on specific
types of fraud attacks such as click fraud, or propose so-
lutions to be applied at the level of individual campaigns.
Conversely, we propose a solution to address the problem
at scale in the programmatic ecosystem, transversely to any
type of advertisement.

Finally, from a methodology perspective we find a pre-
vious work by Chen et al. where entropy has been used in

the area of ad fraud research, but in different context ap-
plied, to detect fake views in online video services [7]. The
authors of this paper propose to use entropy as the final
metric to assess the traffic quality and semi-supervised clas-
sification that rely on manually labeled samples to differen-
tiate valid and invalid traffic. As we describe in Section 3
a limitation of using directly entropy as a metric of quality
is that its interpretation depends on the volume of events
associated. To overcome this limitation, we propose a novel
normalization process to obtain a normalized score. In ad-
dition, our methodology uses statistical supported outliers
detection methods without the need of manual labeling of
suspicious traffic. Hence, although both papers are based on
the same fundamental concept of entropy, the methodology
built on top of this concept is significantly different.

7. CONCLUSIONS
In this paper we present a methodology for the identifi-

cation of low quality ad traffic at scale. This methodology
relies on the concept of entropy to classify the ad traffic
associated to websites, mobile apps and IP addresses show-
ing anomalously deterministic patterns as low quality ad
traffic. The application of this methodology to one of the
largest ad traffic datasets used in the research community
to date suggests that low quality traffic represents (at least)
15 % of programmatic media buys. Based on this, the as-
sociated economic losses for US advertisers are estimated to
be comparable to revenue losses generated by some major
cyber-crimes worldwide.

To assist the Ad Tech industry in the adoption of the de-
scribed methodology as well as to help researchers interested
in re-using it, we have implemented a scalable version of our
methodology and make it available as open source code. In
addition, we are currently working in the implementation of
a system prototype that will use the described methodology
to deliver an updated list of websites, mobile apps and IP
addresses and their associated normalized entropy score as
well as their category based on the threshold scheme defined
in this paper. We believe this list may be of high value for a
variety of players (advertisers, DSPs, Ad Exchanges, SSPs,
publishers, etc.) from the Ad Tech ecosystem.
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